- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 2020年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 预灌装即用型成品培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
行业动态
您现在的位置: 网站首页 >> 行业动态
线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞
[所属分类:行业动态] [发布时间:2022-5-11] [发布人:网站管理员2] [阅读次数:] [返回]
线粒体分裂通过调控相变促进巨噬细胞吞食癌细胞
作者:朱汉斌 来源:中国科学报
山东拓普生物工程有限公司 http://www.topbiol.com
阐明巨噬细胞如何有效地吞食癌细胞对设计下一代肿瘤免疫治疗有重要意义。近日,中山大学孙逸仙纪念医院苏士成教授团队发现线粒体分裂通过改变吞噬机器两个重要成分WIP和WASP相变,从而促进巨噬细胞吞食癌细胞。靶向调控肿瘤微环境谷氨酰胺竞争的酶,能通过促进肿瘤吞噬从而提高多个单抗的疗效。相关研究在线发表于《自然–癌症》(Nature Cancer)。
线粒体为免疫反应提供能量。作者前期发现线粒体基因组转录的环形RNA通过调控ROS调控成纤维细胞功能。因此,作者思考线粒体的动态变化是否会调控巨噬细胞吞食癌细胞。作者利用赫赛汀、美罗华、CD47单抗等三种治疗性抗体,使用乳腺癌、结肠癌、B细胞淋巴瘤三种不同的癌种共18株细胞与人原代巨噬细胞共培养,发现有效吞噬肿瘤的巨噬细胞线粒体呈颗粒样的分裂状态,并且线粒体分裂调控蛋白Drp1明显升高。
体外基因敲除或药物抑制巨噬细胞线粒体分裂能明显抑制其对肿瘤细胞的吞噬。野生型巨噬细胞过继性注入无巨噬细胞的Csf1op/op肿瘤负荷小鼠中明显促进抗体介导下的巨噬细胞对肿瘤的吞噬和治疗效果,但敲除Drp1之后的巨噬细胞却没有这种能力。以上体内外实验证实线粒体分裂是巨噬细胞有效吞噬肿瘤细胞的必要条件。
Actin极化是巨噬细胞吞噬大颗粒物质时吞噬机器组装的主要步骤,作者发现线粒体分裂受到抑制后actin极化发生障碍。多项研究表明,胞内蛋白的聚集(液-液相分离)可调控多种细胞的功能。作者首先通过IUPred2A网站进行蛋白结构分析,发现吞噬机器的两个重要成分WIP和WASP含有长片段的无序区,提示具有容易形成相变的结构。作者通过体外液滴形成、漂白实验和荧光共定位实验证明WIP和WASP能形成明显的液滴。
为了探索线粒体分裂与WIP/WASP相分离调控的具体机制,作者检测了线粒体分裂时的产物在巨噬细胞吞噬肿瘤细胞时的变化以及对WIP/WASP相分离的影响。结果显示,WIP/WASP液滴的形成被线粒体分裂后导致的胞内钙离子水平升高所抑制。在进一步的体外实验中,作者发现静息状态下WIP/WASP相分离阻止了PKC-θ磷酸化WIP,而线粒体分裂产生的胞内高钙离子水平抑制WIP/WASP液滴的形成,使PKC-θ容易接触并磷酸化WIP,从而增加巨噬细胞actin极化和对肿瘤细胞的吞噬。
为了探索肿瘤细胞耐受抗体介导的吞噬是否与巨噬细胞线粒体分裂有关,作者通过芯片、Western blot、质谱技术和Ocomine数据库检测对促吞噬抗体耐受和敏感肿瘤细胞株中差异蛋白的表达,发现耐受吞噬的肿瘤细胞高表达己糖激酶途径的关键酶GFPT2,且细胞内明显积聚其下游代谢产物。GFPT2是调控谷氨酰胺分解为谷氨酸盐的一个限速酶,能促进谷氨酰胺的消耗,而谷氨酰胺的消耗可抑制线粒体的分裂。
作者通过抑制肿瘤细胞GFPT2或添加GFPT2底物谷氨酰胺,发现能增加巨噬细胞线粒体的分裂和对耐受肿瘤细胞的吞噬,而去除微环境中的谷氨酰胺抑制了敏感肿瘤细胞的吞噬。通过基因敲除和化学抑制GFPT2酶均能提高临床单抗在肿瘤治疗中的效果。
该研究通过对不同抗体介导的肿瘤吞噬模型的研究,揭示了肿瘤微环境谷氨酰胺的竞争抑制巨噬细胞内线粒体分裂和维持WIP/WASP相分离,从而抑制PKC-θ磷酸化WIP和Actin的极化,最终产生临床抗体耐药。
该研究为增强下一代肿瘤免疫治疗效果提供了新的思路。
相关论文信息:https://www.nature.com/articles/s43018-022-00354-5
作者:朱汉斌 来源:中国科学报
山东拓普生物工程有限公司 http://www.topbiol.com
阐明巨噬细胞如何有效地吞食癌细胞对设计下一代肿瘤免疫治疗有重要意义。近日,中山大学孙逸仙纪念医院苏士成教授团队发现线粒体分裂通过改变吞噬机器两个重要成分WIP和WASP相变,从而促进巨噬细胞吞食癌细胞。靶向调控肿瘤微环境谷氨酰胺竞争的酶,能通过促进肿瘤吞噬从而提高多个单抗的疗效。相关研究在线发表于《自然–癌症》(Nature Cancer)。
线粒体为免疫反应提供能量。作者前期发现线粒体基因组转录的环形RNA通过调控ROS调控成纤维细胞功能。因此,作者思考线粒体的动态变化是否会调控巨噬细胞吞食癌细胞。作者利用赫赛汀、美罗华、CD47单抗等三种治疗性抗体,使用乳腺癌、结肠癌、B细胞淋巴瘤三种不同的癌种共18株细胞与人原代巨噬细胞共培养,发现有效吞噬肿瘤的巨噬细胞线粒体呈颗粒样的分裂状态,并且线粒体分裂调控蛋白Drp1明显升高。
体外基因敲除或药物抑制巨噬细胞线粒体分裂能明显抑制其对肿瘤细胞的吞噬。野生型巨噬细胞过继性注入无巨噬细胞的Csf1op/op肿瘤负荷小鼠中明显促进抗体介导下的巨噬细胞对肿瘤的吞噬和治疗效果,但敲除Drp1之后的巨噬细胞却没有这种能力。以上体内外实验证实线粒体分裂是巨噬细胞有效吞噬肿瘤细胞的必要条件。
Actin极化是巨噬细胞吞噬大颗粒物质时吞噬机器组装的主要步骤,作者发现线粒体分裂受到抑制后actin极化发生障碍。多项研究表明,胞内蛋白的聚集(液-液相分离)可调控多种细胞的功能。作者首先通过IUPred2A网站进行蛋白结构分析,发现吞噬机器的两个重要成分WIP和WASP含有长片段的无序区,提示具有容易形成相变的结构。作者通过体外液滴形成、漂白实验和荧光共定位实验证明WIP和WASP能形成明显的液滴。
为了探索线粒体分裂与WIP/WASP相分离调控的具体机制,作者检测了线粒体分裂时的产物在巨噬细胞吞噬肿瘤细胞时的变化以及对WIP/WASP相分离的影响。结果显示,WIP/WASP液滴的形成被线粒体分裂后导致的胞内钙离子水平升高所抑制。在进一步的体外实验中,作者发现静息状态下WIP/WASP相分离阻止了PKC-θ磷酸化WIP,而线粒体分裂产生的胞内高钙离子水平抑制WIP/WASP液滴的形成,使PKC-θ容易接触并磷酸化WIP,从而增加巨噬细胞actin极化和对肿瘤细胞的吞噬。
为了探索肿瘤细胞耐受抗体介导的吞噬是否与巨噬细胞线粒体分裂有关,作者通过芯片、Western blot、质谱技术和Ocomine数据库检测对促吞噬抗体耐受和敏感肿瘤细胞株中差异蛋白的表达,发现耐受吞噬的肿瘤细胞高表达己糖激酶途径的关键酶GFPT2,且细胞内明显积聚其下游代谢产物。GFPT2是调控谷氨酰胺分解为谷氨酸盐的一个限速酶,能促进谷氨酰胺的消耗,而谷氨酰胺的消耗可抑制线粒体的分裂。
作者通过抑制肿瘤细胞GFPT2或添加GFPT2底物谷氨酰胺,发现能增加巨噬细胞线粒体的分裂和对耐受肿瘤细胞的吞噬,而去除微环境中的谷氨酰胺抑制了敏感肿瘤细胞的吞噬。通过基因敲除和化学抑制GFPT2酶均能提高临床单抗在肿瘤治疗中的效果。
该研究通过对不同抗体介导的肿瘤吞噬模型的研究,揭示了肿瘤微环境谷氨酰胺的竞争抑制巨噬细胞内线粒体分裂和维持WIP/WASP相分离,从而抑制PKC-θ磷酸化WIP和Actin的极化,最终产生临床抗体耐药。
该研究为增强下一代肿瘤免疫治疗效果提供了新的思路。
相关论文信息:https://www.nature.com/articles/s43018-022-00354-5