- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 预灌装即用型成品培养基
- 2025年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
行业动态
您现在的位置: 网站首页 >> 行业动态
富电子铂镍钴催化剂破解甲醇燃料电池中毒溶解难题
[所属分类:行业动态] [发布时间:2025-12-8] [发布人:杨晓燕] [阅读次数:] [返回]
富电子铂镍钴催化剂破解甲醇燃料电池中毒溶解难题
作者:王祝华,郑丹婷 来源:科技日报
山东拓普生物工程有限公司 http://www.topbiol.com
10月14日,记者从海南大学获悉,该校海洋科学与工程学院副教授苗政培团队成功研发出富电子氮化钛介导的铂镍钴合金催化剂,为解决直接甲醇燃料电池实用化过程中一氧化碳中毒与过渡金属溶解等关键难题,提供了解决方案。相关研究成果已发表于《美国化学学会中心科学》。
当前,直接甲醇燃料电池以甲醇为燃料,具有燃料来源广泛、系统结构紧凑、环境友好等优点,在便携式电源和小型发电系统等领域展现出广阔应用前景。然而在实际使用过程中,高浓度甲醇容易导致催化剂表面一氧化碳中间体的大量积累,引发催化剂中毒。此外,铂基合金中的镍、钴等过渡金属在酸性和高电位环境下易发生溶解,造成催化活性下降,并加速关键膜材料的降解,进而导致电池阻抗的增加,影响整体性能和使用寿命。
针对这些制约因素,苗政培团队基于电子结构调控理念,将电子富集的氮化钛作为催化剂支撑体,并与铂镍钴合金组配,实现了催化剂在实际器件中性能的明显提升。研究显示,金属与载体之间的强电子耦合效应,使得界面处电子转移有效降低了铂与一氧化碳的结合强度,增强了催化剂的抗中毒能力。同时,优化的电子环境也增强了铂与镍、钴之间的化学键强度,显著抑制了过渡金属元素的溶解。在加速耐久性测试中,富电子催化剂中镍、钴的溶解速率较以商业化碳载体负载的铂镍钴合金催化剂,降低幅度超过50%。膜电极组装测试显示,该催化剂在100毫安每平方厘米条件下连续运行50小时,仅有9.6%的电压衰减,峰值功率密度保持率达到89.3%,整体稳定性较采用商业化碳载体负载的对比催化剂提升近4倍。相关催化机制也通过密度泛函理论计算及寿命加速实验予以验证。
苗政培表示,该研究为直接甲醇燃料电池高效、耐久催化剂的开发奠定了科学基础,同时也为质子交换膜燃料电池、甲酸燃料电池等其他受中毒与腐蚀影响的电化学能源体系提供了新的研究思路。
(本文内容来源于网络,版权归原作者所有,如有侵权可后台联系删除。)
作者:王祝华,郑丹婷 来源:科技日报
山东拓普生物工程有限公司 http://www.topbiol.com
10月14日,记者从海南大学获悉,该校海洋科学与工程学院副教授苗政培团队成功研发出富电子氮化钛介导的铂镍钴合金催化剂,为解决直接甲醇燃料电池实用化过程中一氧化碳中毒与过渡金属溶解等关键难题,提供了解决方案。相关研究成果已发表于《美国化学学会中心科学》。
当前,直接甲醇燃料电池以甲醇为燃料,具有燃料来源广泛、系统结构紧凑、环境友好等优点,在便携式电源和小型发电系统等领域展现出广阔应用前景。然而在实际使用过程中,高浓度甲醇容易导致催化剂表面一氧化碳中间体的大量积累,引发催化剂中毒。此外,铂基合金中的镍、钴等过渡金属在酸性和高电位环境下易发生溶解,造成催化活性下降,并加速关键膜材料的降解,进而导致电池阻抗的增加,影响整体性能和使用寿命。
针对这些制约因素,苗政培团队基于电子结构调控理念,将电子富集的氮化钛作为催化剂支撑体,并与铂镍钴合金组配,实现了催化剂在实际器件中性能的明显提升。研究显示,金属与载体之间的强电子耦合效应,使得界面处电子转移有效降低了铂与一氧化碳的结合强度,增强了催化剂的抗中毒能力。同时,优化的电子环境也增强了铂与镍、钴之间的化学键强度,显著抑制了过渡金属元素的溶解。在加速耐久性测试中,富电子催化剂中镍、钴的溶解速率较以商业化碳载体负载的铂镍钴合金催化剂,降低幅度超过50%。膜电极组装测试显示,该催化剂在100毫安每平方厘米条件下连续运行50小时,仅有9.6%的电压衰减,峰值功率密度保持率达到89.3%,整体稳定性较采用商业化碳载体负载的对比催化剂提升近4倍。相关催化机制也通过密度泛函理论计算及寿命加速实验予以验证。
苗政培表示,该研究为直接甲醇燃料电池高效、耐久催化剂的开发奠定了科学基础,同时也为质子交换膜燃料电池、甲酸燃料电池等其他受中毒与腐蚀影响的电化学能源体系提供了新的研究思路。
(本文内容来源于网络,版权归原作者所有,如有侵权可后台联系删除。)



