- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 预灌装即用型成品培养基
- 2025年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
新闻动态
您现在的位置: 网站首页 >> 新闻动态
人工智能可用于鉴别皮肤黑色素瘤类型
[所属分类:新闻动态] [发布时间:2019-11-21] [发布人:] [阅读次数:] [返回]
山东拓普生物工程有限公司
Shandong Tuopu Biol-Engineering Co.,Ltd
近日,印度一个研究小组利用机器学习模型,对皮肤黑色素瘤相关17个关键基因的标记进行识别,区分原发性或转移性黑色素瘤的准确率可达89%。
黑色素瘤,又称恶性黑色素瘤,是来源于黑色素细胞的一类恶性肿瘤,常见于皮肤,亦见于黏膜、眼脉络膜等部位。黑色素瘤是皮肤肿瘤中恶性程度最高的瘤种,容易出现远处转移。早期诊断和治疗因而显得尤为重要。
皮肤黑色素瘤是皮肤癌常见类型之一。与原发性黑色素瘤相比,转移性黑色素瘤患者存活率更低。因此,准确鉴别黑色素瘤类型并制定相应治疗策略,对提高患者存活率具有重要意义。
印度因德拉普拉斯塔信息技术学院教授加金德拉·拉加瓦等人开发出6个机器学习模型,用于识别和验证17个黑色素瘤基因的标记。机器学习即用计算机模拟人类的学习行为,是人工智能核心算法之一。此前,其他关于黑色素瘤的研究已经报告了这17个基因中的11个,该研究小组首次将其余6个基因的标记用于鉴别黑色素瘤类型。
研究人员对6个机器学习模型进行测试,用它们识别并验证上述17个基因的相关RNA(核糖核酸)、微RNA以及基因的甲基化特征等,其中表现最好的一个模型区别转移性还是原发性黑色素瘤的准确率超过89%。研究还发现,RNA、微RNA等基因标记物不仅能用于区分黑色素瘤类型,还可以帮助判断转移性黑色素瘤的发展阶段等。



