- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 预灌装即用型成品培养基
- 2025年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
几乎对PAM无依赖性的Cas9变体
山东拓普生物工程有限公司
Shandong Tuopu Biol-Engineering Co.,Ltd
CRISPR-Cas系统被誉为新一代的遗传学工具。但是,CRISPR-Cas系统需要与靶标相邻的PAM序列以促进Cas酶识别和结合至该位点。
CRISPR靶向特异性是由两部分决定的,一部分是RNA嵌合体和靶DNA之间的碱基配对,另一部分是Cas9蛋白和一个短DNA序列,这个短的
DNA序列通常在靶DNA的3'末端发现,被称为间隔序列前体临近基序(protospacer adjacent
motif,PAM),它存在于病毒DNA中,但不存在于细菌DNA中,有助于防止细菌DNA被自身的免疫系统(CRISPR)切割。
PAM序列在我们的DNA中也很常见,因此CRISPR-Cas9已被用于编辑人类基因组,但是有一定的限制性,不接近PAM的基因不能作为靶点。没有一个相邻、可识别的PAM序列,Cas酶将无法识别或成功附着并切割所需的DNA片段。
包括经典的化脓性链球菌Cas9的变体(SpCas9)在内不同的Cas酶可识别不同的PAM序列,但基因组的大部分仍然无法设靶编辑或更容易产生脱靶突变。例如,SpCas9和SaCas9(来自金黄色葡萄球菌)所识别的PAM序列多含鸟嘌呤/胞嘧啶(G/C-rich),因此利用已报导的碱基编辑系统无法在腺嘌呤/胸腺嘧啶富集(A/T-rich)区域进行精准碱基编辑操作。特别是最常用的SpCas9酶需要GG
PAM序列进行识别,以至于其作用限制仅为基因组的9.9%,靶向区域十分局限。
为了克服这个障碍,曾开发过一种名为SPAMALOT(Search
for PAMs by Alignment of
Targets)的分析软件,对细菌基因组进行生物信息学搜索,以寻找是否存在任何具有限制性较低的PAM的Cas9样酶序列。然后,从生物信息学搜索中创建出最佳匹配的合成版本,并评估它们在CRISPR系统中的效用。但如果一个感兴趣的基因组区域碰巧没有合适的PAM,工程师就得求助另一种Cas酶。
现在,哈佛医学院的生化学家Benjamin P.
Kleinstiver博士领导的研究小组设计了不需要特定PAM就能结合和切割DNA的Cas9蛋白变体,命名为SpG和SpRY,能够对绝大多数人类基因组进行不受限打靶,并具有单碱基对精度,从而纠正心脏病、II型糖尿病、骨质疏松症和慢性疼痛等疾病的相关突变。
“这些工程蛋白可以更自由地靶向过去不可接近的基因组区域,”Kleinstiver说。“通过几乎完全放宽Cas酶对PAM的识别要求,基因编辑的应用被极大地拓展了。最令人兴奋的意义是,从DNA编辑角度来看,全部基因组都可‘治疗’了!”
“虽然未来需要更精确地阐明SpG和SpRY的氨基酸替换的分子作用,我们推测SpRY通过去除典型的碱基特异性相互作用,置换PAM
DNA以促进相互作用来达到其扩大靶向的范围,”作者指出。“在PAM主沟中,通过添加新的非特异性蛋白质:DNA接触进行能量补偿。更实际的是,当考虑用哪种酶进行需要打靶活性的实验时,我们建议用野生型SpCas9用于承载NGG
PAMs的站点,用SpG用于 NGH PAMs,用SpRY编辑剩余的NHN PAMs。”