- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 预灌装即用型成品培养基
- 2025年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
兴奋性稳态调控的分子机制
山东拓普生物工程有限公司
Shandong Tuopu Biol-Engineering Co.,Ltd
自上世纪90年代Gina Turrigiano和Eve
Marder等提出稳态可塑性概念以来,针对突触传递稳态方面的研究已取得较大进展,但有关兴奋性稳态的研究一直未有突破。
神经系统的稳态可塑性是指当神经元突触传递或兴奋性持续改变时,细胞会代偿性诱导突触传递或兴奋性向与原有变化相反的方向调整,从而使得突触传递或兴奋性维持在相对稳定的水平,以保证神经元和神经环路正常信息传递。神经系统稳态可塑性参与调控多种重要生理功能,如在觉醒-睡眠周期中,神经元放电出现持续性改变,其可通过稳态可塑性调控突触的结构和功能。稳态可塑性异常也与自闭症等神经/精神疾病相关,稳态可塑性在自闭症小鼠模型中存在异常,被认为是自闭症产生的分子机制之一。
自上世纪90年代Gina Turrigiano和Eve
Marder等提出稳态可塑性概念以来,针对突触传递稳态方面的研究已取得较大进展,但有关兴奋性稳态的研究一直未有突破。
近日,中山大学中山医学院李勃兴教授团队与纽约大学Richard W. Tsien教授团队合作发现了兴奋性稳态调控的分子机制。课题组使用钠通道阻断剂(TTX)阻断动作电位以模拟神经元兴奋性的长期降低。在TTX撤除后,动作电位的持续时间显著延长,神经元兴奋性代偿性增加,提示神经元出现了兴奋性稳态调控现象。机制研究发现,上述兴奋性稳态调控是由于Nova-2介导的钾通道(BK通道)mRNA选择性剪切降低所致。
值得注意的是,该研究发现长时间TTX处理神经元时,虽然神经元胞体不会产生动作电位,但是神经元突触却产生了明显去极化,足以激活突触部位的L-型钙通道。后者通过其下游的钙调蛋白激酶(βCaMKK和CaMKIV)将信息传递入细胞核,引起Nova-2磷酸化并向核外迁移,导致其介导的BK通道mRNA选择性剪切下降。
上述研究为近30年前提出的“稳态反馈环路”假说提供了完整证据。考虑到该信号通路中多个分子(AMPA受体、L-型钙通道、钙调蛋白激酶家族、Nova-2、BK通道)与自闭症、精神分裂症、抑郁症等神经/精神疾病密切相关,提示该通路的异常可能是上述疾病发生的重要机制。